Luger, G.F. & Stubblefield Paradigm Dependent Human Factors in Expert
Systems Design. (Invited Keynote Paper) Expert Systems in
Telecommunications, A Symposium sponsered by the Metropolitan
Chapter, Human Factors Society, NY, NY, 1987.

The Communications Technical Group
and the

Metropolitan Chapter of the Human Factors Society

Expert System in Telecommunications

A Symposium

March 9, 1987
Time: 9:00 - 5:00

New York City, NY

Theatre in the Gallery of the

IBM-Building,
590 Madison Avenue at 57th Street,

New York City
Symposium Co-Chairs:
Doug Antonelii Derek Schultz
iIBM-E04/664 Media Design Associates
P.0. Box 12195 151 Route 206, B24-5
Research Triangie Park, Flanders,
NC 27709 NJ 07836

(919) 254-0147 {201) 584-49%1

Paradigm Dependent Human Factors Issues
in Expert System Design

by
George F. Luger & William A Stubblefield
Department of Computer Science
University of New Mexico
Albuquerque NM, 87131

Abstract

There are a number of different “interaction styles” that have evolved with the development
of Expert System applications. These include a batch style, a direct access lo data approach, as
well as the more usual question and snswer and meny or form driven approaches. In addition,
many expert systems are beginning to implement graphics based direct manipulation interfaces.
The goal of this pzper is to briefly describe these formats as well as the various Expert System
t,pehitectures” that support them. We also show that the choice of an Expert System interface
cannot be made independently of these software “architectures.”” This has important implications
for the selection of software “packages,” “shells” or languages for designing Expert Systems.

1. Introduction

A number of important human factor issues in Expert System design are very much “para-
digm dependent,” in that the selection of a software ‘“architecture’” can commit the program
designer to some crucial (and oftentimes unacceptable) interface designs. This paper, in section 2,
goes over some common ‘‘styles’ for Expert System interactions. Section 3 reviews the common
software architectures for Expert System applications. Section 4 discusses the commitments that
each of these architectures can impose on the interface and query designs in Expert Systems.

2. Interaction Styles for Expert Systems

The five interaction styles that we present are 1) bateh [8], 2} question and answer (1, 10}, 3)
direct access of instruments or date, [1] 4) menu or form driven, and 5) graphics or direct manipule-
tion approaches. (9] We now present samples of each style along with examples of important
Expert Systems applications or software packages where each of these approaches is taken.

XCON, or eXpert CONfiguration program designed at Digital Equipment Corp, is 2 classic
example of the bateh style of Expert System interaction. {8] Digital developed this software pro-
duct, with John McDermott of Carnegie Mellon University as external consultant, during the
1979-1982 time period. Currently this program configures all VAX class, as well as the full range
of PDP-11 computers delivered by Digital. The configuration program takes the specifications for
the computer from the purchaser’s order, and, constrained by the hardware limitations (bus, disk
size and controllers, main memory, etc) builds the particular computer to meet the customer’s
requirements. This configuration includes the size of the case, location of the boards, appropriate
cabling and all necessary components for a running system.

The data for this program is prepared before a program run, usually in file format-and then
is used to “initialize” appropriate parameters prior to the run. There is no interactive question
and answer dialogue, simply the building of the appropriate computer from its specifications. The

4-6-3

*

current version of XCON is running using the OPS5 production system language. OPS is pri-
marily a “data driven” package, in that it takes the facts (specifications) of the situation, and
using the appropriate rules {referred to as “productions’) produces the required result. XCON is a
commercially successful program, having on the order of 5000 rules and having configurcd well
over one hundred thousand computers.

MYCIN is a program designed at Stanford University as a joint project of the Medical School
and Computer Science Departmest. (1] The program, developed in the middie and iote 1970s is
the archetype of the “rule based” Expert System. The program has just over 500 rules, one of
which in “English” form is presented along with part of a MYCIN “dialog™ as figure 1. The goal
of the MYCIN program is to diagnose bacterial infections in patients, especially spinal meningitis.

Once preliminary data is taken from the patient (name, age, sex, symptoms), if appropriate
data is present (the patient has headaches, dizziness, etc.), MYCIN tries to establish whether the
patient has Meningitis. This program is goal driven, and in trying to establish 2 goal, the ques-
tioning takes on 2 reasonable and coherent form. This is simply because the questions are focused
on trying to establish some particular goal of the problem (Is this a staph infection?).

A disadvantage of the MYCIN question and answer approach is that it requires large
amounts of typing, with a single interview taking 30 to 40 minutes. This is slow going and can be
very error prone. Shortliffe [1] one of the designers of MYCIN, says the rigidity and awkwardness
of this dialog process has to a large extent accounted for MYCIN’s lack of acceptance among doe-
tors. Indeed by objective (double blind) evaluations of MYCIN’s patient diagnoses, 1t outper-
formed the human doctors it was compared with, including several specialists at Stanford. Yet
this program, largely because of its cumbersome interface, is not used!!

Other more recent programs at Stanford, especially PUFF and ONCOCIN, were designed to
overcome the cumbersome interface of MYCIN. PUFF, 2 program for the diagnosis of pulmonary
problems, takes information directly from the patient’s testing devices such as breath capacity and
heart monitoring during exercise. The direct taking of data from instruments for the analysis by
the rules of the program makes the program seer more “intelligent™ in that it does not ask for
information that it can either infer or access directly. This also removes the medical technician or
doctor from the “‘data input’ mode and lets them oversee more important aspects of the analysis.

ONCOGIN (1], znother program from Stanford, is designed for recommendation of cancer
therapies. ONCOCIN is able to directly access the records of the patient for relevant informatien,
from age, weight, to the results of various tests. The general style of both PUFF and ONCOCIN
is the same as MYCIN: they are goal driven rule based programs with certainty factors giving the
“confidences” the program has in its various responses. The programs also support the why and
how queries that the user can interject at any time in the problem solving “dialog.”

The fourth interface model for Expert Systems is the menu or form driven approach. This
interface model seems to be the approach taken by many «pQ" based shells such as EXSYS,
INSIGHT, GURU, FIRST CLASS and others. This interaction style is similar to question and
answer in that the system asks the user for new information as it is needed, however the response
is 2 menu selection rather than a typed answer.

When each new rule is added to the shell program 2 “menu” is designed of English like
queries related to the particular information required for the rule. These menus can improve the
interaction of the original question and answer approach taken by early systems like MYCIN. .
They are also much less error prone :n that the rile designer can specify exactly what answers are
expected from each query. still, a good bit of rigidity can appear in the interactive session, and
the problem solving still is rather slow.

The final interactive style for Expert System desigh is the graphic or direcl manipulation
approach. The roots of this paradigm are Jocated in the SmallTalk language, or the “object
eriented” model for problem solving, [3,7) developed at YEROX in the early 1970s. Later work at
MIT, with the development of Flavors, augmented and extended the original SmallTalk approach.
Without getting into too much technical detail, the “object oriented”” approach provides a simula-
tion of the relationships within the problem solving area under consideration. This simulation

4-6-4

includes a graphic interaction whereby the user can directly manipulate the system. This usually
happens by the user moving the “mouse” to a component of the simulation and then “clicking”
the mouse to change one of the values of that component. For instance, onte component of a steam
cycle simulation might be a valve that can be turned on or off by clicking over the image of the
valve. The color of the valve often changes when the clicking mouse changes its state.

One of the most important examples of the object orlented approach is a program called
STEAMER [10] developed by the US Navy to train their cadets in understanding and using the
propulsion systems for large vessels. STEAMER has many screens and ‘“‘scenarios™ each of which
capture some aspect of the propulsion system. For example, the steam cycle could be represented
graphically on the screen, including pumps, condensers, water tanks and various valves and pipes
connecting this system together. The user can then change the various parameters of the system
(turning a valve on or off, changing the steam pressure, etc) to see how these changes effect the
entire system. .

The graphic or direct manipulation model [9] can offer an excellent interface for appropriate
problems, for teaching neophvtes about steam engines, for example. Other applications, such as
medical diagnosis, may not be at all appropriate {or this approach, however. There is also 2 fairly
high *“start up’ cost on such systems. Steamer requires about $100k hardware investment. This,
of course, will not be appropriate for simpler applications. There is also 2 high “learning” cost for
the programmer to get acquainted with the Object Criented tools.

3. Architectures for Expert System Design

A shell for an Expert System is 2 “framework” for creating an Expert System. One of the
prime design {eatures of Expert Systems is the separation of the program modules for rules and
inferencing. A schematic for such a division is presented in figure 2.

Carefully observing this inference engine / knowledge base distinction gives the program an
important modularity for adding new rules or altering the explanation query routines, without
causing serious disruption of the other aspects of the program. In particular a shell for an Expert
System is the inferencing module of figure 2 without the knowledge base. The creator of the
Expert System then designs rules appropriate to the particular application a2t hand, without having
to redesign the entire inferencing package. Many of these shells come from successful expert sys-
tem applications, probably the most famous shell being EMYCIN, from the original MYCIN
research [1]. The EMYCIN shell allowed the designers of PUFF create that application in about
five person years, whereas the original MYCIN program took about forty person years.

We will cover the three main software “architectures™ for Expert system design: 2) the deci-
sion tree model [5], b} the rule based model [1,2,6], and c) the frame or object oriented
approach {3,7]. The fundamental assumption for good program design in each of these areas, as
mentioned zbove, is the separation of the knowledge rules from the control of the program. In the
first two architectures mentioned above the decision trees and the rules capture the knowledge of
the program and these structures are manipuloted by their respective “engines.’” In the object
oriented approach the entities of the problem are each represented by an appropriate chject and
the relationship between these objects are captured by the “methods” (procedures that make up
part of the object’s specification) and ‘““messages” (information that the objects send and receive
from the objects to which they are related). Thus, new entities and rule relationships are added by
creating new objects with appropriate methods and designed to send and receive messages
appropriate to the other objects already in the system.

The decision tree Expert System model (exempiified by Expert System shells such as Expert
Ease, Expert Edge, and First Class) takes a number of examples of a particular situation and
“induces’ decision tables from these examples. IMigure 3 gives a table of choices for electronic toys
that might be available inp 2 game's shop for groups of people, depending on the cost and age of
the potential recipient. The user gives the program concrete examples and from these the program
“induces’ general rules for future decisions.

4-6-5

The variables for this decision tree may be “integer” as well as the “logical” values shown in
figure 3. For example, the age could be entered 2s 12 instead of child, or 25 instead of adult.
Belore running a new evaluation {taking another gilt enquiry), the program creates decision tables.
These decision tables optimize the process of classifying problem instances. The tables are con-
structed so that questions which make the greatest distinction between problem instances are asked
first. This leads to an optimal decision tree in the sense that classifications can be made with the
fewest possible questions. In the example of figure 3, the decision tree then takes new instances
asking the cost and age of the intended gift recipient, and produces an answer depending on the
rule “induced.” An age of 20, for example would be classified with the previous instance of the 25
year old adult rather than the 12 year old child for the gift recommendation. Confidence measures
are possible in such a2 model, as well as the ability to search all possibilities that had any
confidence at all of being interesting. The usual “why and how™ queries are not available in this
model.

The basic paradigm for the “rule based” Expert System model is the production system. 2]
The production system is 2 construct that organizes the inference rules in the system and applies
them to the solution of a particular problem instance. Each rule is stated as a ‘“condition -
action’ pair within the production model, and corresponds to a single “chunk” of problem solving
knowledge: the condition is a pattern that determines when that knowledge should be applied; the
action is the conclusion that is drawn by the production. A description of 2 problem being solved
is kept in the “working memory” of the system. Working memory is initialized to the starting
problem description; at each cycle of the production system loop, an appropriate production is
selected and used to modify working memory. Productions may also generate user queries for infor-
mation. A simple schematic for the production system is presented in figure 4.

The production system may be run in either “data driven’™ or “goal driven” mode. The
data driven mode takes the facts of a problem and presents them to the conditions of the rules in
the production system. When the conditions of a particular rule are matched the action of that
rule is asserted as 2 new true.description of the problem situation. This new description is again
passed to the conditions of the productions. When another rule is matched another action is made
part of the description. This simple cycle continues until either the zoal is found or there are no
more productions that match the problem description.

In “goal driven” problem solving the goal to be found is presented to the actions of the pro-
ductions. When an action matches, the conditions of that action are created as new (sub)goals to
be established. These new goals are presented to the actions of the productions and another match
indicates further conditions that must be established to prove these {sub)goals. Thus the search
proceeds until actions are matched that are always true {the given information of the problem) and
“back chaining” links these facts with the original goals of the problem, or until no matches occur
and the search “fails”. In the cases of either “data” or “goal” driven reasoning, the production
system offers 2 model for the problem solving, and the resultant search process can be characterized
by a graph.

The explicit use of rules within the production system model make possible the “why - how?
queries of the user. “why did you ask me this?” is answered by presentation of the particular pro-
duction rule under consideration when the query was made. The answer to “why” is the presenta-
tion of the production rule under consideration. “how did you get that information?” is answered
by presentation of that part of the search space used to determine that the fact was true. Thus
both “why” and “how” queries are artifacts of the production rule based search of a graph.
Examples of “why” and “how” queries may be found in the MYCIN segment presented in figure 2.

As mentioned at the end of the preceding section, the “object oriented’” Expert System pack-
age is based on the concepts of the SmallTalk and Flavers languages. In this approach, each
“object’” in the probiem domain is represented as a computational object in the system. These
computational objects include named slots for values associated with the object and procedural
information that implements the objects behavior. For example, figure 5 illustrates how objects
might be used to describe a water pump in a {hypothetical} STEAMER like system. The
“centrifugal-pump” object defines the class of eentrifugal pumps; this definition includes value

4-6-6

slots for pumping capacity, its connections to other objects in the system, its membership in the
more general class of pump objects ete. It also includes procedural information on how to display
a centrifugal pump on the computer screen, how to compute its fuel consumption, how a pump
behaves in case of an oil leak, ete. The instance object for “pump-17"’ is 2 member of this class,
and binds values to these value slots, reflecting the particulars of that pump. In addition, it inher-
its the procedural information from the class object, enabling it to behave in a fashion consistent
with the class object. Since this cbject “behaves” much like a real pump, it may be used by the
system to reason about the behaviors of systems involving centrifugal pumps. For example, such a
system could answer questions such as “what happens if pump-17 gets an oil leak.”

While the ‘“‘architecture” of this approach is a bit more complex (and beyond the scope of
this paper) still the power of simulation with “active objects’” and “messages” is a powerful tool
for Expert Systems problem solving. We add comments on the human factors issues related to
this, as well as the other approaches to Expert System design, in the next section.

4. Paradigm dependent Human Factors Issues

Although the preceding classification of Expert System paradigms was perhaps too
superficial, it does provide a starting point for considering the human factors issues raised by the
selection of a particular architectural approach. In the remainder of this section, we discuss not
only the impact of such a commitment on user interface design but consider its effect on the
broader range of human issues {ease of development, learnability, expense, ete.) involved in build-
ing and using Expert Systems. This discussion takes the form of a list of advantages and disadvan-
tages of each of the major paradigms under discussion.

4.1 The decision tree
The advantages of the decision tree model include:

1. The implementation is very straight forward and concrete, requiring only the presenta-
tion of examples {see figure 2).

2. The program automatically generates an optimal inferencing path based on its “induc-
tion" algorithm. But see disadvantages 3 below.

3. Because the examples are enumerated there is a natural support for menus. Most
induction/decision tree systems automatically produce menus from the set of examples. (
e.z. Select one of each option: age, amount of money, etc, see figure 2).

4. The resulting decision tree {and most systems will show the program designer the tree
produced} is a static and clean model of a state space search.

5. This methodology is available for both PCs (Expert Ease, First Class,..) as well as for
larger systems.

The disadvantages of the decision tree model include:
1. In should be restricted to very small domains (six decision parameters, say), otherwise
the “simple” model mentioned in the advantages becomes almost incomprehensible. Gen-
erating enough examples to cover all possibilities in a very rich domain may be practically

impossible.

9. No allowance for variables eliminates the possibility of entering genera] rules. This is a
great disadvantage for a domain of any complexity. '

3. The inductive algorithm determines an optimal discrimination tree. The resulting

4-6-7

order of queries to the user may have no resemblance to intclligent questioning and may
indeed seem illogical. The designer cannot change this “optimized” questioning order.

4. Because of disadvantage 3 above, any explanations available may not seem “natural,’
i.e., reflecting the user’s concern over the current state of results.

5. There is very limited expressive power even within the rules. For example, p Aq—TV
s is not allowed because as instances p A g — r contradicts p A q — s. One or the other
must go before the decision tree is induced, or else something else must be added to p Aq
to differentiate between r and s.
8. There is no “natural” way to generate graphics to accompany the problem solving.

4.2 The rule based Expert System

Advantages of the rule based model:

1. If - Then rules are 2 very natural way to capture both knowledge and heuristic infor-
mation.

2. The designer has direct control over rule structure and a greater flexibility in building
inferencing.

3. Both data and goal driven strategies support explanation facilities. See comments in
section 3 above, and figure 1.

4. The designer may create general rule relationships, rather than being limited to the
enumeration of examples, as in the decision tree approach.

5. By carefully structuring the rule base the program may be made to “reason” in a very
realistic fashion. Unlike automatically Induced decision trees, a rule base may be struc-

tured to ask questions of the user in an order specified by the designer.

6. There is excellent support for both question and answer as well as menu interaction
styles.

7. The rule based model is supported on a large number of machines [rom PCs on up.
Disadvantages of the rule based model:

1. The rule based approach requires more competent programmers. They must under-
stand issues of representation, search, heuristics, and so on.

2. It is difficult to predict the program’s behavior from examination of the rule base (for a
program of any interesting size!). There must be good editing, tracing, and debugging
facilities provided.

3. It offers a very weak model for human performance.

4. Most rule based programs do not directly support graphics or direct object manipula-
tion styles.

5. This is a poor vehicle for taxonomic information, such as that provided in ‘“semantic
networks,” or “frame based’” reasoning packages.

4-6-8

4.3 The frame or object based systems
Advantages of the “frame - object” paradigm:

1. It offers 2 natural fit to many domains where “simulation’ is an appropriate problem
solving tool.

2. It is excellent for capturing taxonomic knowledge with its classes and inheritance. For
example the facts that Huey, Louie, and Dewey can swim can be represented by the fact
that they all are ducks and that every element of the duck “class” can swim. This can be
a very important advantage when are large numbers of elements in classes. The exceptions
are noted with the individuals.

3. A number of “frame - object” models also support rules (KEE, ART and others) thus
offering the strengths of both approaches.

4. There is excellent support for the “graphic object manipulation” style of data entry or
program control. The graphic image is an essential aspect of the architecture of this
approach. -

5. There is the potential for “abstracting out” interface styles. For example, in KEE and
other systems, standard {and powerful} interfaces may be used to interact with the system.

Disadvantages of the ‘“frame - object” paradigm:
1. Tt is a very difficult paradigm for programmers to master.

2. It is expensive requiring lisp machine or comparable workstation. Not yet available on

PCs.
3. Very slow development times,

4. Because these “environments’ are very complex and interdependent, and still depend
on new technology, many of the commercial systems available still have inconsistencies
and are less robust than might be desired (they are often very “kludgey™).

5. Conclusions

The advantages and disadvantages enumerated above are meant to be the specifics of our
conclusions. None the less, it is important to restate the general philosophical issues behind the
design of this paper. First of all, human factors issues must be considered when choosing an
Expert System design paradigm. Secondly, each of the paradigms described above is limited, but
can actually seern very clever in its approach to problem solving. (In fact, the user can
dangerously overestimate the actual intelligence and “understanding” of these programs.) Finally,
the authors feel very strongly that the human factors choices made in designing an Expert System
are very important, il not the most important issues related to the success of the program.
Quite simply, if the program doesn’t meet the problem solver’s expectations and needs, it won'’t be
used.

4-6-9

B. References.

1. Buchanan, B. G., Shortliffe E. H. Rule-Based Expert Systems. Addison Wesley, Reading Mass.
1984. .

2. Davis, R., Buchanan, B., and Shortliffe, E. Production Rules as a Representation for a
Knowledge Based Consultation Program. In Artificial Intelligence 8(1), 1977, 15-45.

3. Fikes, R., Kehler, T. The Role of Frame-Based Representation in Reasoning. In Commaunications
of the ACM 28(9) (Sept. 1985).

4. Harmon, P. and King, D. Ezpert Systems: Artificial Intelligence in Business. John Wiley &
Sons, Inc. New York. :

5. Hart A. The Role of Induction in Knowledge Elicitation. In Ezpert Systems 2(1) (January 1985).
6. Hayes-Roth, F. Rule Based Systems. In Communications of the ACM 28(9) (Sept. 1985).

7. Kunz, J. C., Kehler, T. P., Williams, M. D. Applications Development Using a Hybrid Al
Development System. In AT Magazine 5(3) (Fall 1984).

8. McDermott, J. R1: The Formative Years. In AJ Magazine 2(2) (Summer 1981).

6. Schneiderman, Ben Designing the User Interface: Strategies for Effective Human Computer
Interaction. Addison Wesley, Reading Mass. 1987.

10. Waterman, D. A., A Guide to Ezpert Systems. Addison Wesley, Reading Mass. 1985.

4-6-10

Figure 1
A Transeript of 3 MYCIN Interaction

30) Has Pi333 had any injury or Insult to, of defect In the central
pervous system (excluding neurosurgery)?
= NO

.

a5) s meningitls a hospltal acquired Infection?

* WHY
The user asks "WHY" {0 se2 an explanation of the
fire of reasoning MYCIN is follawing. The program
first rephirases the questions and then show the rule
whosa premise it is irying 1o agrablish,

& WHY l5 it Imponiant to determing whether the inlectlon was

acquired while the patlent was hospitallzed?]

;] This wili ald In determining the organisms {other than those
seen on cultures ar smears) which might be causing the
fntecticon

It has aiready besn established that
(2.1] the Infection which requites therapy Is meninglls, and
{2.2] organisms were not 5een on the stain of the pending
est cuiture, and
{2.3] the type of the Infection ts Wactertal, and
[2.4] neurnsurgery is not one of the relevant items from the
histery of p1sds, and
[2.5] the age of pt538 is greater than 10 days
Therelcre if
{2.6] the Intection was acquired while the patlent was
mospitaiized then
there Is evidence that the organism (other than those seen
. on cultures or smears) which might be causing the
nfection |5 e.colf .75) straphylococcus-£0ag-pos {3)
pseudomanas-aeruginosa {3} klebsiella-pneumoniae {5}
Author: Yu
[AULESAS]

The numbers in paremtheses following each

conclusion indicate the measure of important of the

conelugion. This single number combines Irequency

and utility considerations, as discussed in sassion 4.

[BACK TO QUESTION 35..]

 HOW 23
Al Lhis point the user is asking for aaditional
clarification of low clause 23 of the above rule has
already been determined. MYCIN shows the rumbers
of the rules used o make conclusions and will print
any of them upon request

(i.e. HOW was it established that the type of the infection 15 bacterlal?}

The follow rules concluded about: ’

the Nkelinood that the type of the infection Is bacterkal

Rule Yes No
7} RAULETLE (-19)
.8} RULESCO (51)
{2.9} RULESO1 {.95)
jichy)] RULESCZ {97}
[3.1) RULES26 (.98}
3.2} RULES04 {87)

[[.3} RULES24 {.58)

Thus, it has been established that he type of the Infection is bacterfal.
MYCIN now prints intermediate conclusion to how the
user what is is consigaring the likely causes of the
problem to be. Further questions are motivated by
these conclusions

} have found evidence (RULESS RULESST) that treatment should

cover tor E.colf causing meningitis.

{ have found evidence (RULES45 RULESST RULESTS) that treatment

should cover for Pseudomonas-aeruginosa causing meningitls,

{ have found evidence {RULES45 RULESST) that treatment should

cover for Klebsiella-pneumoniae causing meningitis

] have tound evidence {RULESOT) that treaiment should caver for

Dipiotoccus-preumoniae causing meningitis

40) Does P1538 have local neurologlcal signs?

= UNKNOWN

4-6-11

Figure 2
A Prototypical Expert System Architecture

«| KNOWLEDGE |- > GEN, XNOWLEDGE
~| BASE EDITOR BASE
M
\
INTERACTION | | PROBLEM
“l HANDLER SOLVER
/M
\
ﬁ < CASE-SPECIFIC
DATA
M
W
G&A P EXPLANATION
#] ROQUTINES “|_SUBSYSTEM
Figure 3
Decision Tables For Toy Selection System
Decision Table for Toy Selection Expert System The Resulting Decision Tree
Money Age Gift money?
little adult © calculator
much adult MindProber much Hitle
Little child Transformer age? age?

much child Computer
child adult child dult

computer MindProber transformer calculator

Figure 4
A Production System

¥
' &l ——— A
(e ol
Working c3—* A3
Mamory
Pattarn " *

Patlarn —= Acilon o changae pattern

- « of wotking memory
CN ~wssm—p= AN I

CONTROL "LOOPS™ UNTIL
WORKING MEMORY PATTERN NO LONGER MATCHES

4-6-12

Figure 5
A Hypothetical Object Oriented Program
Arrows point to other objects in system

Class_Object: Centrifugal_FPump

Super.class: Pump —

Pumping_Capacity:

Input_line:

Qutput_line:

Procedure: Display_Centrifugal Pump

Procedure: Simulate_Oil_Leak

A y

Instance_Object: Fipe 23
Class: Pipe —

Diameter: 47
Cutput: Pump.17 pra—
Input: Tank_15

Instance Object: Pump_17
Class: Centrifugal_Pump -—-——/
Pumping. Capacity: 20 gal/min
Input: Pipe_23 JPu—
Qutput: Pipe § -—

Instance_Object: Pump.3

Class: Centrifugal_Pump s

4-6-13

